Abstract
This research aims to utilize available technologies to assess the structural performance of prestressed concrete bridges. The structural performance is investigated at the local level in the form of delamination and spalling and at the global level in the form of strength and serviceability load rating and reliability index. At the local level, Infrared scanning combined with high-definition image scanning is utilized to provide a rapid condition assessment of the bridge components (deck, superstructure, and substructure). Two scans are performed, a year apart. The results of the two scans are compared to each other and to the bridge element level inspection report. A new approach is developed to identify areas where further evaluation is recommended. At the global level, A novel approach is introduced to assess the impact of girders' deterioration on the load rating, component reliability index, and system reliability index of the bridge. The impact of repairs to the girders is also assessed while accounting for uncertainties in the loading, capacity terms, and repair procedures. Computer vision-based load test, validated and supplemented by strain gauge and potentiometers sensors, is utilized to measure deflection under static and dynamic loading conditions. The effect of field-derived distribution factors and dynamic impact factors is investigated for the load rating and component and system reliability indices. The findings of this investigation are used to develop a decision tree for recommending the utilization computer vision-based load test to explore possible increases in load rating or target component reliability.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2023
Semester
Summer
Advisor
Catbas, Necati
Degree
Doctor of Philosophy (Ph.D.)
College
College of Engineering and Computer Science
Department
Civil, Environmental, and Construction Engineering
Degree Program
Civil Engineering
Identifier
CFE0009709; DP0027816
URL
https://purls.library.ucf.edu/go/DP0027816
Language
English
Release Date
August 2024
Length of Campus-only Access
1 year
Access Status
Doctoral Dissertation (Campus-only Access)
STARS Citation
Debees, Marwan, "Utilizing Technologies to Investigate Structural Performance of Bridges at Local and Global Levels" (2023). Electronic Theses and Dissertations, 2020-2023. 1845.
https://stars.library.ucf.edu/etd2020/1845
Restricted to the UCF community until August 2024; it will then be open access.