Abstract

Ocean surface vector wind (OVW) is an essential parameter for understanding the physics and dynamics of the ocean-atmosphere system, thereby improving weather forecasting and climate studies. Satellite scatterometers, synthetic aperture radars, and polarimetric microwave radiometers have provided almost global coverage of ocean surface vector wind for the last four decades. Nonetheless, a consistent and uninterrupted long-time data record with the capability of resolving sub-diurnal variability has remained a critical challenge over the years. The Global Precipitation Measurement Mission (GPM) is a satellite mission designed to provide space-based precipitation information on a global scale with complete diurnal sampling. This dissertation presents a combined active and passive retrieval algorithm to investigate the feasibility of ocean surface vector wind measurements from the GPM core satellite by utilizing its Ku- and Ka-band Dual-frequency Precipitation Radar (DPR) and the multi-frequency GPM Microwave Imager (GMI) observations. The unique GPM active and passive geophysical model functions were empirically developed by characterizing the anisotropic nature of ocean backscatter of normalized radar cross-section (δ°) and brightness temperature (TB) at multiple bands. For passive GMF, the modified 2nd Stoke's parameter (linear combination of V and H-pol TBs) was used to mitigate the atmospheric contamination and to enhance the anisotropic wind direction signal superimposed on GMI TBs. The GMFs were combined in a maximum likelihood estimation (MLE) algorithm to infer the OVW. Finally, the retrieval algorithm was validated by comparing OVW retrievals with collocated NASA Advanced Scatterometer (ASCAT) wind vectors. The wind speed and direction retrieval performance statistics are promising and comparable with those of conventional scatterometer and polarimetric radiometer data products. The algorithm demonstrates the capability of the GPM to provide a long-term OVW data record for the entire GPM-TRMM era, which may include unique monthly diurnal OVW statistics.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu.

Graduation Date

2023

Semester

Spring

Advisor

Jones, W Linwood

Degree

Doctor of Philosophy (Ph.D.)

College

College of Engineering and Computer Science

Department

Electrical and Computer Engineering

Degree Program

Electrical Engineering

Identifier

CFE0009860; DP0028142

URL

https://purls.library.ucf.edu/go/DP0028142

Language

English

Release Date

November 2023

Length of Campus-only Access

None

Access Status

Doctoral Dissertation (Open Access)

Share

COinS