Abstract
An experimentally obtained comparison between the breakup of water droplets in the flow field behind both a detonation wave and shock wave is considered. The experiments presented here were completed to support ongoing research efforts into droplet breakup mechanisms at different Mach and Weber numbers. The physical features of the droplets are observed using a high-speed camera and shadowgraph imagery. Droplets are roughly between 2-3 mm in diameter and are struck by detonation waves of Mach 5-6 and shock waves induced by deflagration combustion events of Mach 1-2. The Weber number of these experiments ranges from 5(10^3) to 90(10^3). These experiments were initiated in a detonation tube using four separate mixtures to allow for the creation of shock waves in the detonation tube, which consisted of hydrogen and oxygen or methane and oxygen at different equivalence ratios and once with the addition of nitrogen. Additionally, the breakup of these droplets is compared by non-dimensionalizing the displacement of fluid at the equator of the droplet, which is further compared to predictions made by the Taylor Analogy Breakup model. Attempts are made to determine the influence of factors other than Weber number on the deformation of a water droplet, while also considering the effects of Weber number.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu.
Graduation Date
2023
Semester
Summer
Advisor
Vasu Sumathi, Subith
Degree
Master of Science in Mechanical Engineering (M.S.M.E.)
College
College of Engineering and Computer Science
Department
Mechanical and Aerospace Engineering
Degree Program
Mechanical Engineering; Thermo-Fluids Track
Identifier
CFE0009877; DP0028410
URL
https://purls.library.ucf.edu/go/DP0028410
Language
English
Release Date
February 2025
Length of Campus-only Access
1 year
Access Status
Masters Thesis (Campus-only Access)
STARS Citation
Briggs, Sydney, "The Comparison of Water Droplet Breakup in a Shock or Detonation Medium" (2023). Electronic Theses and Dissertations, 2020-2023. 1906.
https://stars.library.ucf.edu/etd2020/1906
Restricted to the UCF community until February 2025; it will then be open access.