Abstract
Virtual and Constructive (VC) simulations can be used to measure weapon effectiveness and support the capture of the operator's behavior. These areas are very non-linear, and Artificial Intelligence (AI) can support better analysis due to its way of dealing with incomplete information, noise, and nonlinearities. VC simulations focus on scenario variation and sensitivity analysis to find critical factors of success. This variation is a significant necessity for reducing bias. These scenario variations and the relative easiness to program numerous scenarios makes VC an excellent candidate to generate data from different sources. The combined data can be processed by an analytics tool, using AI/machine learning, to build useful models that can be used to study weapon effectiveness (and extrapolating beyond linear models) and build behavioral models that can encapsulate behavior. This encapsulated behavior can be used in other scenarios and study ways to enhance training or counterattacks. The dissertation ends with conclusions, limitations of the research project, contributions to the body of knowledge, and further research. The issues of new research go in details of potential methodologies using VC and AI/machine learning.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2020
Semester
Summer
Advisor
Rabelo, Luis
Degree
Doctor of Philosophy (Ph.D.)
College
College of Engineering and Computer Science
Department
Industrial Engineering and Management Systems
Degree Program
Industrial Engineering
Format
application/pdf
Identifier
CFE0008197; DP0023551
URL
https://purls.library.ucf.edu/go/DP0023551
Language
English
Release Date
August 2025
Length of Campus-only Access
5 years
Access Status
Doctoral Dissertation (Campus-only Access)
STARS Citation
Lowe, Larry, "Integration of Artificial Intelligence and Virtual and Constructive Simulations to Increase Performance: Two Case Studies with Big Data and Agent-based Simulation" (2020). Electronic Theses and Dissertations, 2020-2023. 248.
https://stars.library.ucf.edu/etd2020/248
Restricted to the UCF community until August 2025; it will then be open access.