Abstract

Silicon has proven to be one of the materials of choice for many integrated photonic applications. However, silicon photonics is limited by certain material shortcomings. Two shortcomings addressed in this work are zero second-order optical nonlinearity, and the lack of methods available to achieve broadband polarization diversity. Heterogeneous integrated solutions for these shortcomings of silicon photonics are presented in this work. First, nonlinear frequency conversion is demonstrated with thin-film lithium niobate on silicon substrates. The method for reaching the highest-achieved second-harmonic generation conversion efficiency, using active monitoring during periodic poling, is discussed. Additionally, a cascaded approach for generating higher-order harmonics is presented, along with a theoretical model to extract conversion efficiencies from measurements performed with pulsed sources. Initial work to integrate second-order and third-order nonlinearities together using thin-film lithium niobate and chalcogenide is also presented. Second, a spatially-mapped anisotropic material platform that exhibits broadband polarization diversity is discussed. This platform currently demonstrates polarization beam splitters, and polarization-selective beam taps and microring resonators, whose results are presented. Also discussed is a method to include polarization rotators to demonstrate full polarization diversity, as well as designs and initial work to expand the platform to operate at longer wavelengths, specifically those in the telecom band.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2020

Semester

Summer

Advisor

Fathpour, Sasan

Degree

Doctor of Philosophy (Ph.D.)

College

College of Optics and Photonics

Department

Optics and Photonics

Degree Program

Optics and Photonics

Format

application/pdf

Identifier

CFE0008241; DP0023595

URL

https://purls.library.ucf.edu/go/DP0023595

Language

English

Release Date

August 2020

Length of Campus-only Access

None

Access Status

Doctoral Dissertation (Open Access)

Share

COinS