Abstract

Current seismic codes do not incorporate a well-established methodology for the selection of passive dampers type and their topological distribution and properties along the height of structures. Achieving the intended performance is made more complicated when structures are subject to extreme events and operate well within their inelastic range. This thesis utilizes a self-organizing genetic algorithm (soGA) with probabilistic gene-by-gene crossover and an adaptive active ground motion subset scheme to efficiently find optimal designs of low-rise steel frames subject to large number of extreme ground motions. Different types of passive dampers were considered, while the steel frames were modeled using the modified Ibarra-Medina-Krawinkler deterioration model with bilinear hysteretic response. Optimal design topologies were identified for different types of dampers that satisfied predefined performance levels in terms of story drift and floor acceleration demand parameters. With the capability to consider an active ground motion subset scheme, the computational effort was significantly reduced without prohibiting soGA to find optimal design solutions that satisfy the performance levels for the full ground motion set.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2020

Semester

Summer

Advisor

Apostolakis, Georgios

Degree

Master of Science (M.S.)

College

College of Engineering and Computer Science

Department

Civil, Environmental, and Construction Engineering

Degree Program

Civil Engineering; Structures and Geotechnical Engineering

Format

application/pdf

Identifier

CFE0008260; DP0023614

URL

https://purls.library.ucf.edu/go/DP0023614

Language

English

Release Date

8-15-2023

Length of Campus-only Access

3 years

Access Status

Masters Thesis (Open Access)

Share

COinS