Abstract
Deep convolutional neural networks have achieved remarkable results for detecting large and medium sized objects in images. However, the ability to detect smallobjects has yet to achieve the same level performance. Our focus is on applications that require the accurate detection and localization of small moving objects that are distantfrom the sensor. We first examine the ability of several state-of-the-art object detection networks (YOLOv3 and Mask R-CNN) to find small moving targets in infraredimagery using a publicly released dataset by the US Army Night Vision and Electronic Sensors Directorate. We then introduce a novel Moving Target Indicator Network (MTINet) and repurpose a hyperspectral imagery anomaly detection algorithm, the Reed-Xiaoli detector, for detecting small moving targets. We analyze the robustness and applicability of these methods by introducing simulated sensor movement to the data. Compared with other state-of-the-art methods, MTINet and the ARX algorithm achieve ahigher probability of detection at lower false alarm rates. Specifically, the combination of the algorithms results in a probability of detection of approximately 70% at a low false alarm rate of 0.1, which is about 50% greater than that of YOLOv3 and 65% greater than Mask R-CNN.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2020
Semester
Fall
Advisor
Mahalanobis, Abhijit
Degree
Master of Science in Computer Engineering (M.S.Cp.E.)
College
College of Engineering and Computer Science
Department
Electrical and Computer Engineering
Degree Program
Computer Engineering
Format
application/pdf
Identifier
CFE0008315; DP0023752
URL
https://purls.library.ucf.edu/go/DP0023752
Language
English
Release Date
December 2020
Length of Campus-only Access
None
Access Status
Masters Thesis (Open Access)
STARS Citation
Cuellar, Adam, "Detecting Small Moving Targets in Infrared Imagery" (2020). Electronic Theses and Dissertations, 2020-2023. 344.
https://stars.library.ucf.edu/etd2020/344