Abstract
The next generation of nuclear reactors (Generation IV) are specified to use graphite as the choice material for neutron moderation and structural components. For this reason, study of diffusion behavior of the fission product, ruthenium (Ru), in the candidate graphite grades, POCO AXF-5Q & ZXF-5Q, IG-110, NBG-18 and PCEA, is necessary. Diffusion data for Ru in these grades is absent due to the lack of prior studies and this work aims to fill this void and begin the study of this metallic fission product's diffusion behavior. By utilizing physical vapor deposition (PVD), dynamic secondary ion mass spectroscopy (SIMS), and the thin film solution to the diffusion equation coupled with a short circuit diffusion correction term, the diffusivities and Arrhenius temperature dependence are determined in the range of 500-1000°C and reported for the first time. Diffusion of Ru in this range is slow, with both lower activation energies and diffusion coefficients than other metallic fission products. Simulations of Ru diffusion on a graphene plane give activation energies similar to those acquired in this study. This is consistent with Ru behaving as an intercalating species and using the region in between graphene-like basal planes of graphite to travel through the lattice.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2020
Semester
Fall
Advisor
Sohn, Yongho
Degree
Master of Science in Materials Science and Engineering (M.S.M.S.E.)
College
College of Engineering and Computer Science
Department
Materials Science and Engineering
Degree Program
Materials Science and Engineering
Format
application/pdf
Identifier
CFE0008330; DP0023767
URL
https://purls.library.ucf.edu/go/DP0023767
Language
English
Release Date
December 2020
Length of Campus-only Access
None
Access Status
Masters Thesis (Open Access)
STARS Citation
Graydon, Kevin, "Diffusion of Fission Products in Nuclear Graphite" (2020). Electronic Theses and Dissertations, 2020-2023. 359.
https://stars.library.ucf.edu/etd2020/359