Abstract
The need for proper management of bilgewater to meet discharge regulations (e.g., 15 ppm oil) has revealed the necessity to expand the current understanding of bilgewater emulsions. This study proposed to evaluate emulsion stability under various environmental conditions and to identify governing parameters for emulsion formation. The stabilizing properties of eight-commercial cleaners and two-neat surfactants were evaluated. In situ characterization techniques were used for monitoring emulsion stability. Additionally, a needle-type pH microsensor and fluorescence spectroscopy were used for analyzing mass transfer at the oil-water interface. Water quality of extracted bilgewater showed to highly vary between vessels (e.g., conductivity: 1.74 -- 24 mS/cm, chemical oxygen demand [COD]: 1,279–42,800 mgO2/L, and total suspended solids [TSS]: 256–4,248 mg/L). Emulsion stability was significantly affected by surfactant type, temperature, and salinity. In particular, increase in salinity and temperature greatly reduced emulsion stability by enhancing emulsion coalescence. From the surfactants/detergents tested, emulsion stability was in the order of Type 1 > SDS > B&B > Power green > Solid surge> Calla= PRC > Triton X-100 > 6% AFFF= Blast-off from most to least stable. Suspended solids stabilized emulsions under certain environments, particularly at 0.5 x CMClog. Alkalinity of emulsifiers was found between 3.3 -- 413 mg/L CaCO3 and the presence of unknown additives in the NSBM#4 showed to increase emulsion alkalinity. pH microprofiles demonstrated the diffusion of additives at the interface, which was verified by the increase in bulk-water fluorescence, indicating the diffusion of organic compounds. In addition, the diffused additives enhanced the formation of stable emulsions. Overall, this study presents a systematic investigation of bilgewater emulsion characteristics using multi-faceted experimental approaches from conventional methods to a novel microsensor technique. The effect of environmental parameters on the formation and stability of bilgewater emulsions was evaluated. This work intended to assist in the selection of more suitable bilgewater treatment techniques and the detection of bilgewater conditions triggering emulsion stability.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2020
Semester
Spring
Advisor
Lee, Woo Hyoung
Degree
Master of Science (M.S.)
College
College of Engineering and Computer Science
Department
Civil, Environmental and Construction Engineering
Degree Program
Environmental Engineering; Environmental Engineering Sciences
Format
application/pdf
Identifier
CFE0008408; DP0023844
URL
https://purls.library.ucf.edu/go/DP0023844
Language
English
Release Date
November 2020
Length of Campus-only Access
None
Access Status
Masters Thesis (Open Access)
STARS Citation
Diaz Hernandez, Daniela, "Emulsion Characterization Study for Improved Bilgewater Treatment and Management" (2020). Electronic Theses and Dissertations, 2020-2023. 436.
https://stars.library.ucf.edu/etd2020/436