Abstract

Space missions design requires already tested and trusted control algorithms for spacecraft motion. Rapidly testing control algorithms at a low cost is essential. A novel robotic system that emulates orbital motion in a laboratory environment is presented. The system is composed of a six degree of freedom robotic manipulator fixed on top of an omnidirectional ground vehicle accompanied with onboard computer and sensors. The integrated mobile manipulator is used as a testbed to emulate and realize orbital motion and control algorithms. The kinematic relations of the ground vehicle, robotic manipulator and the coupled kinematics are derived. The system is used to emulate an orbit trajectory. The system is scalable and capable of emulating servicing missions, satellite rendezvous and chaser follower problems.

Graduation Date

2020

Semester

Spring

Advisor

Elgohary, Tarek

Degree

Master of Science in Aerospace Engineering (M.S.A.E.)

College

College of Engineering and Computer Science

Department

Mechanical and Aerospace Engineering

Degree Program

Aerospace Engineering; Space System Design and Engineering

Format

application/pdf

Identifier

CFE0008425

Language

English

Release Date

November 2020

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Share

COinS