Abstract

Due to the globalization of IC design in the semiconductor industry and outsourcing of chip manufacturing, 3PIPs become vulnerable to IP piracy, reverse engineering, counterfeit IC, and hardware Trojans. To thwart such attacks, ICs can be protected using logic encryption techniques. However, strong resilient techniques incur significant overheads. SCAs further complicate matters by introducing potential attacks post-fabrication. One of the most severe SCAs is PA attacks, in which an attacker can observe the power variations of the device and analyze them to extract the secret key. PA attacks can be mitigated via adding large extra hardware; however, the overheads of such solutions can render them impractical, especially when there are power and area constraints. In our first approach, we present two techniques to prevent normal attacks. The first one is based on inserting MUX equal to half/full of the output bit number. In the second technique, we first design PLGs using SiNW FETs and then replace some logic gates in the original design with their SiNW FETs-based PLGs counterparts. In our second approach, we use SiNW FETs to produce obfuscated ICs that are resistant to advanced reverse engineering attacks. Our method is based on designing a small block, whose output is untraceable, namely URSAT. Since URSAT may not offer very strong resilience against the combined AppSAT-removal attack, S-URSAT is achieved using only CMOS-logic gates, and this increases the security level of the design to robustly thwart all existing attacks. In our third topic, we present the usage of ASLD to produce secure and resilient circuits that withstand IC attacks (during the fabrication) and PA attacks (after fabrication). First, we show that ASLD has unique features that can be used to prevent PA and IC attacks. In our three topics, we evaluate each design based on performance overheads and security guarantees.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2020

Semester

Spring

Advisor

Yuan, Jiann-Shiun

Degree

Doctor of Philosophy (Ph.D.)

College

College of Engineering and Computer Science

Department

Electrical and Computer Engineering

Degree Program

Computer Engineering

Format

application/pdf

Identifier

CFE0008401; DP0024110

URL

https://purls.library.ucf.edu/go/DP0024110

Language

English

Release Date

11-11-2020

Length of Campus-only Access

None

Access Status

Doctoral Dissertation (Open Access)

Share

COinS