Abstract
Stationary power generating gas turbines are held to strict emissions standards that limit efficiency and power output. Dry low NOx combustors are being designed to limit NOx emissions while simultaneously improving efficiency. Axially staged combustors are leveraged to reduce emissions by staging heat release into separate stages. This is done by splitting some fuel and air to a downstream axial stage that is closer to the combustor exit. In this stage, the residence time is decreased allowing for optimal turbine inlet temperatures with improved emissions. The current thesis focuses on the downstream reacting jet-in-crossflow at power generating gas turbine relevant conditions. The experimental facility consists of a headend burner which provides a vitiated crossflow at various conditions for the axial stage. The headend burner consists of a concentric dump style combustor that is used to stabilize a lean methane-air flame. Downstream of the vitiator is the test section which consists of 3 optical viewing ports for imaging diagnostics and an interchangeable injector plate to study different jet geometries. The current work investigates a 4 mm diffusion jet, a 0.5 in fully premixed jet, 0.5 in partially premixed jet, and a 0.5 in fully premixed jet. Particle Image Velocimetry (PIV) is utilized to obtain flow-field characteristics, and CH* chemiluminescence is used to visualize flame behavior. Additionally, a Horiba gas analyzer is used to obtain emissions measurements for various run conditions. Various flames are observed for the different conditions ran, and emissions measurements show axially staging benefits at full load gas turbine conditions.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2020
Semester
Spring
Advisor
Ahmed, Kareem
Degree
Master of Science in Aerospace Engineering (M.S.A.E.)
College
College of Engineering and Computer Science
Department
Mechanical and Aerospace Engineering
Degree Program
Aerospace Engineering; Thermofluid Aerodynamic Systems Track
Format
application/pdf
Identifier
CFE0007956; DP0023097
URL
https://purls.library.ucf.edu/go/DP0023097
Language
English
Release Date
May 2025
Length of Campus-only Access
5 years
Access Status
Masters Thesis (Campus-only Access)
STARS Citation
Genova, Tommy, "High Pressure Reacting Characteristics of a Jet in Vitiated Crossflow" (2020). Electronic Theses and Dissertations, 2020-2023. 50.
https://stars.library.ucf.edu/etd2020/50
Restricted to the UCF community until May 2025; it will then be open access.