Abstract
Gold Nanoparticles have piqued interest for use in a wide range of diagnostic and therapeutic applications including biosensors, assays, vaccine development, drug delivery, and photothermal therapy. While extensive research has been conducted, the applications of gold nanoparticles have yet to see the same level of commercial success as well-established methods such as ELISA and lateral flow immunoassays. Studies analyzing the efficacy of gold nanoparticle technologies in vivo and in vitro provide seemingly conflicting results that reflect a further need for investigation into the biological response of gold nanoparticles. A large factor in the variation is the nature of the interaction between gold nanoparticles and the immune system. The immune system is among the first systems involved with the initial interaction with a foreign entity, and is comprised of several mechanisms for a variety of circumstances. While current studies have begun to provide insight regarding immunological response to gold nanoparticles, further research is still required. In this study, the interactions between gold nanoparticles and 13 different immunoglobulin isotypes from bovine, human, and murine blood were studied using dynamic light scattering, colorimetry, and UV-Vis spectroscopy. In further testing, gold nanoparticle interaction was monitored in mixed samples of immunoglobulin isotypes associated with T helper 1 and T helper 2 cell pathways to potentially observe any change in interaction as the result of a mixed sample. Preliminary results revealed a potential trend involving a greater increase in absorbance and hydrodynamic radius for isotypes associated with the T helper 1 cell related immune response. However, certain inconsistent repeatability of the results was noticed from the mixed immunoglobulin studies, and this observation seems to indicate the possibility of additional factors contributing to the immunoglobulin-gold nanoparticle interactions.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2021
Semester
Spring
Advisor
Huo, Qun
Degree
Master of Science (M.S.)
College
College of Graduate Studies
Department
Nanoscience Technology Center
Degree Program
Nanotechnology
Format
application/pdf
Identifier
CFE0008480; DP0024156
URL
https://purls.library.ucf.edu/go/DP0024156
Language
English
Release Date
May 2021
Length of Campus-only Access
None
Access Status
Masters Thesis (Open Access)
STARS Citation
Hassan, Rick, "Interactions between Gold Nanoparticles and Immunoglobulin Isotypes" (2021). Electronic Theses and Dissertations, 2020-2023. 509.
https://stars.library.ucf.edu/etd2020/509