Abstract
With advancements in biometric securities, focus has increased on utilizing gait as a means of recognition. Gait describes the unique walking pattern present in humans and has shown promising results in person re-identification tasks. Unlike other biometric features, gait is unique in that it is a subconscious behavior minimizing the risk of purposeful obfuscation. In this research, we first cover supervised approaches showing that current methods fail to learn a unique signature that describes the motion of a subject. Rather they extract frame-based feature information which is then aggregated. While these methods have shown to be effective, they do not solve the underlying problem of trying to extract a gait signature. In this research, a novel approach is proposed that utilizes motion information to extract a true gait signature. Utilizing the repetitive nature of body part motion, we argue that since each subject has a unique gait, they will also have a unique repetition pattern. From a walking sequence, we are able to extract a frame-based similarity matrix that effectively shows a unique repetitive pattern. We further explore this idea using unsupervised learning and show that this unique repetition pattern performs well in both multi-view and cross-covariate scenarios. Currently there are no unsupervised methods for gait recognition, so this foundational work acts as a guideline for future research and evaluation. In addition, the proposed unsupervised method outperforms many supervised methods.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2021
Semester
Spring
Advisor
Rawat, Yogesh Singh
Degree
Master of Science (M.S.)
College
College of Engineering and Computer Science
Department
Computer Science
Degree Program
Computer Science
Format
application/pdf
Identifier
CFE0008498; DP0024174
URL
https://purls.library.ucf.edu/go/DP0024174
Language
English
Release Date
May 2021
Length of Campus-only Access
None
Access Status
Masters Thesis (Open Access)
STARS Citation
Matasa, Alexander, "A Deep Learning Approach for Learning Human Gait Signature" (2021). Electronic Theses and Dissertations, 2020-2023. 527.
https://stars.library.ucf.edu/etd2020/527