Abstract
The United States government has set 2050 as the target for net-zero greenhouse gas emissions due to their increasing levels and the subsequent rise in global temperatures. To meet this target, there has been renewed interest in the combustion of high-energy biofuels that could combat these issues. Thus, the Department of Energy started the Co-Optimization of Fuels and Engines program to find bioderived blendstocks that can harmonize with current and future generation engines to increase power and efficiency, all while reducing overall emissions. As part of this program, it is crucial to understand the combustion of these fuels at the temperatures and pressures internal combustion engines operate at. Therefore, the oxidation and pyrolysis of several advanced biofuels—cyclopentanone, prenol, 1-pentene and trans-2 pentene, and methyl propyl ether—have been studied in a shock tube reactor to quantify some of their fundamental combustion properties. Measurements include ignition delay times and time-resolved species concentrations, including that of fuel decomposition and formation of intermediate species such as carbon monoxide and ethylene. These measurements are useful for validating and updating chemical kinetic mechanisms that provide the chemistry input into computational fluid dynamic codes. This study's measured data are compared to the predictions of the most recent literature chemical kinetic mechanisms for each fuel. When appropriate, sensitivity analyses were conducted to highlight reactions sensitive to the conducted measurements, and some reaction rate modifications were made.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2021
Semester
Spring
Advisor
Vasu Sumathi, Subith
Degree
Doctor of Philosophy (Ph.D.)
College
College of Engineering and Computer Science
Department
Mechanical and Aerospace Engineering
Degree Program
Mechanical Engineering
Format
application/pdf
Identifier
CFE0008506; DP0024182
URL
https://purls.library.ucf.edu/go/DP0024182
Language
English
Release Date
May 2021
Length of Campus-only Access
None
Access Status
Doctoral Dissertation (Open Access)
STARS Citation
Ninnemann, Erik, "Mid-Infrared Laser Absorption Spectroscopy and Ignition Delay Time Measurements of Advanced Renewable Fuels at High Pressure in a Shock Tube" (2021). Electronic Theses and Dissertations, 2020-2023. 535.
https://stars.library.ucf.edu/etd2020/535