Abstract

In this work, a variety of layered materials are considered for their potential technologic applications and the role of structure on the physical properties of the material system as a whole. Transition metal dichalcogenides form the core of the work discussed here, with additional results from an iron pnictide-based superconductor and for a biologically-sourced proton conductor. Here, a commercial scanning tunneling microscope (STM) with liquid cryogenic cooling provides information about both the atomic-scale structure of the surface and the local electronic density of states (LDOS) as a function of position. The interplay of superconducting and charge-density wave states is discussed with regards to the iron pnictide superconductors, whereas the role of interlayer hybridization and moire periodicity provides the focus for the transition metal dichalcogenide works. Finally, a brief discussion of biological and ionic analogs to charge transport properties will be highlighted in the case of shrimp-shell derived chitosan biofilm. These materials are the subject of ongoing, interdisciplinary study for their myriad properties, and an understanding of their nanoscopic characteristics, microscopic characteristics, and the role of extrinsic factors is sought after to rationally inform their potential uses in next-generation electronics, sensors, catalysis, and more.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2020

Semester

Spring

Advisor

Ishigami, Masahiro

Degree

Doctor of Philosophy (Ph.D.)

College

College of Sciences

Department

Physics

Degree Program

Physics

Format

application/pdf

Identifier

CFE0008598; DP0024274

URL

https://purls.library.ucf.edu/go/DP0024274

Language

English

Release Date

May 2022

Length of Campus-only Access

1 year

Access Status

Doctoral Dissertation (Open Access)

Included in

Physics Commons

Share

COinS