Abstract
The Cu2O and CuO thin films were synthesized by using RF sputtering technique. Comparisons were made with films created by deposition at room temperature followed by thermal annealing between 1000C and 4000C and using different gases, oxygen (O2) (oxidizing and reactive gas) and nitrogen (N2) (inert gas), besides air. The thickness of the thin films were kept constant, around 2000 Å (Angstrom). In addition, the RF power and pressure deposition were kept constant, as well. The thin films were evaluated for a range of wavelengths between 200 nm and 400 nm (Ultra Violet spectrum), 400 nm and 700 nm (Visible spectrum), 700 nm and 800 nm (Infrared spectrum) for both, optical transmittance and photoluminescence. From the experimental results, the higher annealing temperature and the introduction of nitrogen (N2) gas produced the following results: the optical bandgap for the Cu2O was found to be 2.15 eV and photoluminescence peak around 578 nm, which matched the theoretical analyses. Overall, there was a decrease in the optical bandgap of the Cu2O from 2.58 eV at room temperature to 2.15 eV for the film annealed in nitrogen gas at 4000C. This indicates that the Cu2O is a potential candidate in solar cell applications. The CuO thin film had a bandgap of 2.19 eV at room temperature, with the increase in annealing temperature, the bandgap decreases as well. The presence of air in the chamber allowed for the highest decrease in comparison with the N2 and O2. This was reflected in the decrease in the bandgap values from 2.19 eV to 2.04 eV for the CuO films annealed at 4000C. The photoluminescence peak for the CuO in air annealed at 4000C was around 607 nm. Both types of films were analyzed with respect to other optical characteristics, like absorbance, reflectance, refractive index, extinction coefficient, optical conductivity, dielectric constants, as well as material characteristics like x-ray diffraction.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2021
Semester
Summer
Advisor
Sundaram, Kalpathy
Degree
Doctor of Philosophy (Ph.D.)
College
College of Engineering and Computer Science
Department
Electrical and Computer Engineering
Degree Program
Electrical Engineering
Format
application/pdf
Identifier
CFE0008626;DP0025357
URL
https://purls.library.ucf.edu/go/DP0025357
Language
English
Release Date
8-15-2022
Length of Campus-only Access
1 year
Access Status
Doctoral Dissertation (Open Access)
STARS Citation
Bunea, Radu, "The Effect of Annealing Temperatures and Inert/Reactive Gasses on Optical Properties of Cu2O and CuO Thin Films" (2021). Electronic Theses and Dissertations, 2020-2023. 655.
https://stars.library.ucf.edu/etd2020/655