Abstract
Energy sources powering space missions range from highly energetic nuclear reactions to short-lifetime and low-output batteries. The proper selection of a power system is dependent on the mission duration and destination and oftentimes energy sources that may be optimal for the former may be unsuitable for the latter. Various limitations of these power sources hinder the capacity for regular and frequent space exploration. However, the ability to harvest heat for electrical power generation would allow for long-distance and long-duration missions at a reduced cost. By employing a regulated, self-propagating, exothermic chemical reaction between solid fuel and oxidizer, we hope to devise a slow-burning reactant system capable of generating heat at a harvestable rate. Eighteen energy-dense fuel and oxidizer combinations were selected to assess for their slow-propagating potential. One ceramic and one graphite propagation cell were designed to monitor combustion along a linear length of pyrolant powder and to measure reaction temperatures. Each reaction was ignited through heating of a nichrome wire placed at one end of the pyrolant mixture and four thermocouples were placed at 1 cm intervals along the length of powder following the wire. In addition to the propagation cell, a multi-step selection process was devised to evaluate each pyrolant. By this process, the pyrolant mixture between lithium peroxide and boron was selected, and the best propagation rate achieved by this system was measured to be 1.49 cm/s.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2021
Semester
Summer
Advisor
Kapat, Jayanta
Degree
Master of Science in Mechanical Engineering (M.S.M.E.)
College
College of Engineering and Computer Science
Department
Mechanical and Aerospace Engineering
Degree Program
Mechanical Engineering; Thermo-Fluids Track
Format
application/pdf
Identifier
CFE0008634;DP0025365
URL
https://purls.library.ucf.edu/go/DP0025365
Language
English
Release Date
August 2021
Length of Campus-only Access
None
Access Status
Masters Thesis (Open Access)
STARS Citation
Chagoya, Katerina, "Harvesting Heat from Safer, Energy-Dense Slow Pyrolant Mixtures for Future Space Missions" (2021). Electronic Theses and Dissertations, 2020-2023. 663.
https://stars.library.ucf.edu/etd2020/663