Abstract

The experiences of the Apollo lunar landings revealed the danger lunar dust can pose to surrounding hardware, outposts, and orbiting spacecraft. Future lunar missions such as the Artemis program will require more information about the trajectories of ejecta blown by landers to protect orbiting spacecraft such as the Lunar Gateway. In this paper, we simulate lunar lander ejecta trajectories using the Mercury N-body integrator. We placed cones of test particles on the Moon at the North Pole, South Pole, and Equator with various ejection speeds and angles. The results show that particles ejected at speeds near the Moon's escape velocity can take from several days to weeks to re-impact the lunar surface. The time particles spend in the vicinity of the Moon varies mostly by location. Particles stay aloft after 30 days at launch speeds as low as 2.142 km/s when launched from the Equator. Number density maps and flux density maps of the particle trajectories reveal that particles launched from the South Pole are likely to impact the Lunar Gateway at its orbit near periselene at ejection speeds as low as 2.142 km/s. Particles launched from the Equator also reach the altitude of the Gateway orbit. Particles ejected from the North Pole can impact the Gateway along its orbit at ejections speeds somewhere between 2.3324 and 2.3562 km/s.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2021

Semester

Summer

Advisor

Colwell, Joshua

Degree

Master of Science (M.S.)

College

College of Sciences

Department

Physics

Degree Program

Physics; Planetary Sciences

Format

application/pdf

Identifier

CFE0008720;DP0025451

URL

https://purls.library.ucf.edu/go/DP0025451

Language

English

Release Date

8-15-2022

Length of Campus-only Access

1 year

Access Status

Masters Thesis (Open Access)

Share

COinS