Abstract

The objective of this dissertation was to develop novel methods of patterning inorganic and organic materials, develop biocompatibility evaluations, and subsequently apply these methods toward developing biosensors and lab-on-a-chip devices, such as Interdigitated Electrodes (IDEs) and Microelectrode Arrays (MEAs) on non-traditional (such as nanostructured and plasmonic) polymer substrates or deploy these methods to enhance precision cellular placement on traditional (glass) MEA substrates. It was hypothesized that a combination of such facile microfabrication techniques and patterning technologies on traditional and non-traditional substrates would increase the sensitivity and selectivity of such sensor platforms by several orders of magnitude, and potentially introduce new modalities for cell-based biosensing. In order to demonstrate the biological functionality of these new IDEs and MEAs, a variety of cell cultures were used (cardiac, stem cell, and endothelial cells) to study the growth, proliferation, modes of increasing sensitivity and response to various compounds in vitro (outside the body).

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2020

Semester

Fall

Advisor

Rajaraman, Swaminathan

Degree

Doctor of Philosophy (Ph.D.)

College

College of Engineering and Computer Science

Department

Materials Science and Engineering

Degree Program

Materials Science and Engineering

Format

application/pdf

Identifier

CFE0008772;DP0025503

URL

https://purls.library.ucf.edu/go/DP0025503

Language

English

Release Date

6-15-2021

Length of Campus-only Access

None

Access Status

Doctoral Dissertation (Open Access)

Share

COinS