Abstract
Ubiquitous in the modern world, the epitaxial thin film offers a wide range of practical applications in the field of microelectronics, solar industries, optical devices, and catalysis. This thesis deals with studying the growth and characterization of molybdenum nitride (MoN) and various dielectric encapsulated Ru(0001) thin films on single-crystal substrates. The phase-specific and single-crystalline MoN film was grown epitaxially on pre-nitrogen-covered Ru(0001) via physical vapor deposition and characterized by UHV based surface science analytical techniques, including X-ray photoelectron spectroscopy, helium ion scattering spectroscopy, auger electron spectroscopy, and low energy electron diffraction (LEED). The annealing temperature of 700 K was found to result in well-ordered hexagonal films that appear to grow layer-by-layer initially and in registry with the Ru(0001) support. The MoN film starts to decompose via a presumptive N2 recombinative desorption mechanism upon annealing above T = 700 K, which leaves the film in a purely metallic Mo-Ru configuration by T = 1100 K. The oxidation kinetics of hexagonal MoN at ambient conditions predict the complete oxidation of single layer of MoN in ~30 days. Enhanced scattering of electrons at surfaces is a critical factor for the resistivity size-effect observed in single-crystalline nanoscale metals. In this work, we have investigated the surface-dependent effects on resistivity for oxide-capped Ru(0001) films with thickness in the nanometer regime utilizing XPS and LEED to monitor the change in the chemistry and structure of the Ru(0001) interface. The variation in resistivities resulting from presumptive changes in surface structure and chemistry were related to the changes in the Ru surface's specularity (p) for electron scattering in the context of the Fuchs-Sondheimer semi-classical model. In this context, we have demonstrated a fully (reversibly) tunable specularity at the metal interface (from fully specular to fully diffuse), buried under the amorphous oxide dielectrics.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2020
Semester
Fall
Advisor
Kaden, William
Degree
Doctor of Philosophy (Ph.D.)
College
College of Sciences
Department
Physics
Degree Program
Physics
Format
application/pdf
Identifier
CFE0008778;DP0025509
URL
https://purls.library.ucf.edu/go/DP0025509
Language
English
Release Date
6-15-2021
Length of Campus-only Access
None
Access Status
Doctoral Dissertation (Open Access)
STARS Citation
Khaniya, Asim, "Preparation and Characterization of Epitaxial Thin Films with Applications in Catalysis and Microelectronics" (2020). Electronic Theses and Dissertations, 2020-2023. 807.
https://stars.library.ucf.edu/etd2020/807