Abstract
Liquid jets in crossflows are regularly used in the aerospace industry because they are lightweight and effective ways to disperse fuel into air streams. The behavior of the injected liquid is universally dependent on the conditions into which the fuel is injected, which is then dependent on the operating conditions of the engine. Variation in the behavior of the liquid jet can cause variation in fuel mixing, which can affect downstream combustion efficiency. To minimize such variation, this work introduces a solid obstruction into the jet flow path. A variety of solid obstructions (pintiles) are evaluated to determine the effects of geometric parameters on flow independence. These design parameters include penetration into the liquid jet, the vertical distance of the pintile above the injection orifice, and the angle of the pintile relative to the injection surface. The pintiles were examined over a wide variety of flow conditions using high speed Mie scattering, varying Weber numbers (20-80) and momentum flux ratio (4-45). The trajectories of the liquid jets were then evaluated and compared across flow cases to determine the flow independence of each injector. The imaging was also used to ascertain the causes of the higher flow independence to inform future designs. The results demonstrate that pintiles with high orifice coverage, a large height above the injection surface, and an angle of 45° produced the most effective fuel injection. Droplet size distributions were also analyzed using a PDPA at the outlet the system to ensure that the flow independence of the injector did not impact the droplet sizes, and it was determined that the benefit of the pintile did not come at the cost of droplet size, which is an important fueling parameter. Information gathered from this research helps inform future design strategies to improve current and future injection schemes.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2021
Semester
Fall
Advisor
Ahmed, Kareem
Degree
Master of Science in Aerospace Engineering (M.S.A.E.)
College
College of Engineering and Computer Science
Department
Mechanical and Aerospace Engineering
Degree Program
Aerospace Engineering; Thermofluid Aerodynamic Systems
Format
application/pdf
Identifier
CFE0008809; DP0026088
URL
https://purls.library.ucf.edu/go/DP0026088
Language
English
Release Date
December 2026
Length of Campus-only Access
5 years
Access Status
Masters Thesis (Campus-only Access)
STARS Citation
Clark, Charles, "Flow Independent Liquid Jet in Crossflow Injection with Pintile Obstructions" (2021). Electronic Theses and Dissertations, 2020-2023. 838.
https://stars.library.ucf.edu/etd2020/838
Restricted to the UCF community until December 2026; it will then be open access.