Abstract
Control augmentation is a control strategy that has been wildly studied in human-in-the-loop systems. A human control model is crucial to the performance of such control augmentation since it allows the controller to act accordingly via predicting the human operator's control behavior. The benefit of the control augmentation is limited by the fact that the human control models are inaccurate in general. In this study, two types of uncertainties, human vision distortion and internal vehicle model distortion are investigated. Based on the proposed models, a Hidden Markov Model based control augmentation framework is studied to assist human operators to control dynamic systems to precisely follow the desired commands. The proposed method is first studied for a truck in row alignment scenarios. Later, the method is improved for a general class of dynamic human-in-the-loop systems. A new general form of the human internal vehicle model is proposed to describe the operator's understanding about the dynamics. A recursive, closed-form solution of the internal vehicle model parameters is derived for a class of dynamical systems so that the computational cost is significantly reduced.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2021
Semester
Fall
Advisor
Xu, Yunjun
Degree
Doctor of Philosophy (Ph.D.)
College
College of Engineering and Computer Science
Department
Mechanical and Aerospace Engineering
Degree Program
Mechanical Engineering
Format
application/pdf
Identifier
CFE0008816; DP0026095
URL
https://purls.library.ucf.edu/go/DP0026095
Language
English
Release Date
December 2026
Length of Campus-only Access
5 years
Access Status
Doctoral Dissertation (Campus-only Access)
STARS Citation
Dai, Andong, "Control Augmentation Design for Some Nonlinear Dynamic Systems with Human-in-the-loop" (2021). Electronic Theses and Dissertations, 2020-2023. 845.
https://stars.library.ucf.edu/etd2020/845
Restricted to the UCF community until December 2026; it will then be open access.