Abstract

Traditional brain imaging modalities, for example, MRI, CT scan, X-ray, etc. can provide precise and high-resolution images of the brain for diagnosing lesions, tumors or clots inside the brain. However, these modalities require bulky and expensive test setups accessible only at specialized diagnostic centers, and hence may not be suitable or affordable to many patients. Furthermore, the inherent health risks limit the usability of these modalities for frequent monitoring. Microwave imaging is deemed a promising alternative due to its being cost-effective, portable, non-ionizing, non-intrusive. Therefore, this work aims to design an effective microwave head imaging system for the detection of blood clots inside the brain. Two miniaturized antipodal Vivaldi antenna designs are proposed which can provide wideband operation covering the low microwave frequency range (within 1 - 6 GHz) while having electrically small dimensions, directional radiation pattern with reasonable gain, and without requiring immersion in any matching/ coupling liquid. A head imaging system is presented which utilizes a quarter-head scanning approach, to reconstruct four images of the brain by scanning four quarters of the head, using the designed antipodal wideband Vivaldi antenna. A numerical brain model, with and without the presence of blood clot, is simulated using the proposed head-imaging system. At each quarter, the antenna is placed at nine different positions for scanning. The reflected signal at each position is processed and using confocal microwave imaging technique four images of the brain are reconstructed. A comparison is made among the four images in terms of their intensities, for the detection and approximate location of the blood clot inside the brain. The presence of higher intensity regions in any specific quarter of the head demonstrates the presence of a clot and its location and validates the feasibility of the proposed head imaging system using the low frequency wideband Vivaldi antenna.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2021

Semester

Fall

Advisor

Wahid, Parveen

Degree

Doctor of Philosophy (Ph.D.)

College

College of Engineering and Computer Science

Department

Electrical and Computer Engineering

Degree Program

Electrical Engineering

Format

application/pdf

Identifier

CFE0008885; DP0026164

URL

https://purls.library.ucf.edu/go/DP0026164

Language

English

Release Date

December 2021

Length of Campus-only Access

None

Access Status

Doctoral Dissertation (Open Access)

Share

COinS