Keywords
Auto-ignition, hydrogen, natural gas, hydrogen enriched natural gas
Abstract
A successful transition to clean energy hinges on meeting the world's growing energy demand while reducing greenhouse gas emissions. Achieving this will require significant growth in electricity generation from clean and carbon-free energy sources. Several energy providers have already begun the transition from traditional carbon-based fuels to cleaner alternatives, such as hydrogen and hydrogen enriched natural gas. However, there are still many technical challenges that must be addressed when applying these fuels in gas turbines. The application of hydrogen or hydrogen/natural gas blends to advanced class gas turbines, which have higher operating pressures and temperatures has raised concerns about the potential for leakages or fuel sequencing operations where flammable mixtures of fuel and air could auto-ignite. Public information on the auto-ignition of hydrogen in air at atmospheric pressure is well documented. Such data shows the auto-ignition temperature of hydrogen is roughly 100 °C lower than that of methane. Studies also show that as pressure increases, methane's auto-ignition temperature decreases. However, there was insufficient information in the published literature to characterize the influence of pressure on auto-ignition for hydrogen fuel applications. This study describes the test methodology used to evaluate conditions where auto-ignition occurs for various fuel-air mixtures operating at pressures between 1-30 atmospheres and equivalence ratios between 0.2-1.6. Testing was completed with hydrogen, natural gas and blends at various equivalence ratios using a heated volume with multiple reactant delivery methods. Testing was performed for natural gas to validate the test and data collection methods cited in prior published literature. Results indicate that at atmospheric pressures, an increase in hydrogen concentration results in a reduced auto-ignition temperature. However, at 30 atmospheres, the auto-ignition temperature increased with higher hydrogen concentrations. iv Variations of auto-ignition delay times were also observed during the testing and are compared to modeling predictions, providing insight into auto-ignition characteristics.
Completion Date
2023
Semester
Fall
Committee Chair
Vasu Sumathi, Subith
Degree
Master of Science in Aerospace Engineering (M.S.A.E.)
College
College of Engineering and Computer Science
Format
application/pdf
Identifier
DP0028056
URL
https://purls.library.ucf.edu/go/DP0028056
Language
English
Release Date
December 2023
Length of Campus-only Access
None
Access Status
Masters Thesis (Open Access)
STARS Citation
Loving, Christopher T., "Auto-Ignition Characteristics of Hydrogen Enriched Natural Gas for Gas Turbine Applications" (2023). Graduate Thesis and Dissertation 2023-2024. 28.
https://stars.library.ucf.edu/etd2023/28