Keywords
extended cognition, spatial reasoning, spatial knowledge acquisition, military training, acquisitions, human systems integration
Abstract
The Direction Orientation Test (DOT) on the current version of the Aviation Selection Test Battery has seen ceiling effects in recent years necessitating a need for a change in how the Navy assesses spatial reasoning, and in part due to techniques which had been taught to examinees prior to their taking the exam. This exam impacts the selection of 1,000 naval aviators across the Marine Corps, Navy, and Coast Guard. As new tests were placed into developmental stages, questions arose whether it was the test that mattered or the techniques, including the ability to extend cognition by utilizing available tools in the environment. This study aims to investigate whether the extension of cognition, or the integration of affordances and techniques improves human performance on the TOT. The study intended to provide metrics for the extension of cognition and compare performance in accuracy and questions attempted. The study included 144 Sailors and Marines participating in one of three conditions: Control, Experimental Condition 1 (EC1), and Experimental Condition 2 (EC2). EC1 participants conducted the trial with the allowance to use paper or pencil (as tools to extend their cognition). EC2 allowed the participants the same utilization as EC1, while integrating spatial reasoning methods taught during the trial. The results showed that the extension of cognition alone, EC1, did not outperform the other groups in accuracy, or questions attempted but yielded the shortest response time. EC2 outperformed the groups in accuracy and questions attempted but yielded the longest response time. These results demonstrate that when seeking overall effectiveness with a new training tool or method that considerations must be given to how the human in the loop will interact with the tools and techniques, and their basic understanding of the intended utilization will show performance improvements. This approach applies to many designers and developers across the modeling and simulation space to drive at improved efficiencies in transitioning innovations.
Completion Date
2024
Semester
Summer
Committee Chair
Maraj, Crystal
Degree
Doctor of Philosophy (Ph.D.)
College
College of Sciences
Department
Modeling, Simulation, and Training
Degree Program
Modeling and Simulation
Format
application/pdf
Identifier
DP0028572
URL
https://purls.library.ucf.edu/go/DP0028572
Language
English
Release Date
8-15-2025
Length of Campus-only Access
1 year
Access Status
Doctoral Dissertation (Campus-only Access)
Campus Location
Orlando (Main) Campus
STARS Citation
Armendariz, Nicholas, "Spatial Reasoning: Modeling Cognitive Integration for Acquisitions" (2024). Graduate Thesis and Dissertation 2023-2024. 368.
https://stars.library.ucf.edu/etd2023/368
Accessibility Status
Meets minimum standards for ETDs/HUTs
Restricted to the UCF community until 8-15-2025; it will then be open access.