Keywords

Cryptocurrency, malware, crypojacking, metaverse, malicious, security

Abstract

Cryptocurrencies are experiencing a significant surge, with the total valuation surpassing two trillion US dollars at specific points. This remarkable growth is underscored by the existence of over 23,000 different cryptocurrencies as of 2024, according to CoinMarketCap. These digital assets aim to break down borders and enhance access to financial services, fostering a more inclusive global economy.

However, the swift ascent and widespread adoption of cryptocurrencies come with considerable risks. The growing popularity and promise of these digital assets have opened up new avenues for malicious actors. Cybercriminals are exploiting public infrastructures, the cloud, the metaverse, and various websites to mine, distribute, and magnify the negative impacts of cryptocurrencies. These activities jeopardize the security and integrity of such systems, posing risks to users. Tackling these security challenges continues to be a crucial priority.

This dissertation investigates the security vulnerabilities of cryptocurrencies across various infrastructures. We focus on three distinct types of infrastructure and analyze how these vulnerabilities interact with the security landscape in each context. The study categorizes infrastructure into three groups, representing different stages in the evolution of information technology: current, emerging, and future infrastructures. Among other interesting insights, our findings reveal a skewed distribution of cryptojacking websites concentrated in regions with high internet penetration and significant malicious activity. Additionally, we identify an intersection between cryptomining pools and public cloud infrastructure, with a prevalence of cryptomining pools in the cloud and malicious activities originating from these pools, disproportionately affecting two major cloud providers. Finally, we observe malicious activities in the metaverse domain, noting that the popularity of metaverse coins does not correlate with specific security patterns.

Overall, this dissertation provides a comprehensive understanding of the security challenges posed by cryptocurrencies and offers insights into mitigating these risks in the form of system-specific actionable recommendations.

Completion Date

2024

Semester

Summer

Committee Chair

Mohaisen David

Degree

Doctor of Philosophy (Ph.D.)

College

College of Engineering and Computer Science

Department

Modeling and Simulation

Degree Program

Modeling and Simulation

Format

application/pdf

Identifier

DP0028588

URL

https://purls.library.ucf.edu/go/DP0028588

Language

English

Rights

In copyright

Release Date

August 2024

Length of Campus-only Access

None

Access Status

Doctoral Dissertation (Open Access)

Campus Location

Orlando (Main) Campus

Accessibility Status

Meets minimum standards for ETDs/HUTs

Share

COinS