Keywords

Surface water treatment; Green sorption media; ZIPGEM; Nutrient removal; Seasonality effect

Abstract

Driven by excess nutrients in water bodies, eutrophication has long been an issue in water resources management. Harmful algal blooms (HABs) in a highly eutrophic water body lead to hypoxia, creating a “dead zone,” which renders the oxygen levels inadequate for the survival of marine life. This study examined the field-scale filtration performance of two specialty absorbents to improve watershed remediation within a Total Maximum Daily Load program. The goal was to simultaneously remove nutrients and biological pollutants along Canal 23 (C-23) in the St. Lucie River Basin, Florida. The filtration system installed in the C-23 river corridor was equipped with either clay– perlite with sand sorption media (CPS) or zero-valent iron and perlite green environmental media (ZIPGEM). Both media were formulated with varying combinations of sand, clay, perlite, and/or recycled iron based on distinct recipes. Seasonality effects were also evident in nutrient removal efficiencies while the decomposition of dissolved organic nitrogen played a pivotal role in nutrient removal, Overall, ZIPGEM demonstrated a more stable nutrient removal efficiency than CPS in the phase of seasonal changes while biological pollutants can be fully removed over seasons.

Completion Date

2024

Semester

Summer

Committee Chair

Ni-bin Chang

Degree

Master of Science in Environmental Engineering (M.S.Env.E.)

College

College of Engineering and Computer Science

Department

Civil, Environmental, and Construction Engineering

Degree Program

Environmental Engineering

Format

application/pdf

Identifier

DP0028591

URL

https://purls.library.ucf.edu/go/DP0028591

Language

English

Rights

In copyright

Release Date

August 2024

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Campus Location

Orlando (Main) Campus

Accessibility Status

Meets minimum standards for ETDs/HUTs

Share

COinS