Keywords

Shock Tube, CO, Thermometry, Thermocouple

Abstract

The Navy is interested in comparing multi-thermocouple probes, tested in the field, with scanned laser absorption thermometry. This comparison aims to understand the effects of excess Carbon Monoxide (CO) and carbon (soot) resulting from rich nitromethane (CH3NO2) combustion events interacting with the outside air, as well as aluminum catalysts, on the temperature of the ensuing fireball. These interactions create mixing zones with varying gas temperature and composition. Currently, research at the UCF shock tube involves taking preliminary CO-scanned thermometry data with the goal of comparing thermocouple insert results in the future. The thermocouple insert is securely positioned within a specially designed end wall and protected by a heat shield. By comparing the temperature measurements obtained by one-dimensional shock relations with those obtained through scanned laser thermometry, based on CO characterization experiments conducted previously on the same shock tube, we aim to analyze temperature measurements and evaluate how the presence of the thermocouple insert affects the incident shockwave geometry, as well as the resulting reflected wave and temperature conditions. The goal is to observe any discrepancies in temperature measurements between the one-dimensional shock relations and the scanned laser method. This will enable researchers to assess the impact of the thermocouple insert in testing environments. Experiments were conducted using a mixture of 3% carbon monoxide (CO), 20% helium (He), and 77% argon (Ar), with an expected temperature range of 950 – 1950K, at pressures of 0.7 – 1 atmosphere (atm).

Completion Date

2023

Semester

Fall

Committee Chair

Vasu Sumathi, Subith

Degree

Master of Science in Aerospace Engineering (M.S.A.E.)

College

College of Engineering and Computer Science

Department

Mechanical and Aerospace Engineering

Format

application/pdf

Identifier

DP0028076

URL

https://purls.library.ucf.edu/go/DP0028076

Language

English

Release Date

December 2024

Length of Campus-only Access

1 year

Access Status

Masters Thesis (Campus-only Access)

Campus Location

Orlando (Main) Campus

Restricted to the UCF community until December 2024; it will then be open access.

Share

COinS