Keywords

Hypersonic, Detonation

Abstract

Detonation-based combustion systems are desired for propulsion and power systems due to their ability to provide high thermal efficiency and enable supersonic flight. Detonation combustion in hypersonic flows has traditionally been realized using an oblique detonation wave. However, oblique detonation realization and stabilization in combustion systems is challenging. This communication presents an alternative realization of a detonation mode of combustion through a reacting Mach stem. The detonation is experimentally realized in a hypersonic reacting facility, which is optimized for Mach 5 flow at the combustor inlet and includes a 2D-wedge to stabilize hypersonic reactions at high-enthalpy flow conditions. The Mach stem detonation is analyzed with simultaneous 30 kHz schlieren and chemiluminescence imaging, which reveals the coupling between the Mach stem and the reaction. Further confirmation is provided by comparing the Mach number of the reacting Mach stem with the Chapman-Jouguet (CJ) detonation Mach number. It is found that the Mach number of the reacting Mach stem reaches 94% of the CJ detonation Mach number, confirming that the reacting Mach stem realizes a detonation mode of combustion.

Completion Date

2023

Semester

Fall

Committee Chair

Ahmed, Kareem

Degree

Master of Science in Mechanical Engineering (M.S.M.E.)

College

College of Engineering and Computer Science

Department

Mechanical and Aerospace Engineering

Degree Program

Mechanical Engineering

Format

application/pdf

Identifier

DP0028049

URL

https://purls.library.ucf.edu/go/DP0028049

Language

English

Release Date

December 2028

Length of Campus-only Access

5 years

Access Status

Masters Thesis (Campus-only Access)

Campus Location

Orlando (Main) Campus

Restricted to the UCF community until December 2028; it will then be open access.

Share

COinS