Title

Extreme value probabilistic theory for mixed-mode brittle fracture

Authors

Authors

D. W. Nicholson;P. Z. Ni

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

Eng. Fract. Mech.

Keywords

fracture; probabilistic fracture; cracks; brittle materials; mixed mode; reliability; biaxial load; CRACK; CRITERION; STRESS; STATES; Mechanics

Abstract

In this investigation, extreme value probabilistic methods are combined With Sih's mixed-mode fracture model to furnish strength distributions in plates of brittle materials with random cracks. The crack lengths are described by a two-parameter probability density function, their orientations follow a uniform distribution and the crack number follows a binomial distribution. Materials of interest are assumed to be isotropic and statistically homogeneous. A ''weakest link'' model, thought to be appropriate for brittle materials, is used in which catastrophic failure occurs if the dominant crack attains a critical condition. Extreme value distributions for strength of the plates are derived as a function of the size (crack number) of the plates, the parameters of the fracture model and the parameters of the crack length distribution. Numerical results are presented showing the effect of the normalized variance of the crack length distribution on the scale dependence of the mean and variance of the plate strength distribution. (C) 1997 Elsevier Science Ltd.

Journal Title

Engineering Fracture Mechanics

Volume

58

Issue/Number

1-2

Publication Date

1-1-1997

Document Type

Article

Language

English

First Page

121

Last Page

132

WOS Identifier

WOS:A1997YE79100010

ISSN

0013-7944

Share

COinS