Title
Physical Models For Predicting The Performance Of Si/Si, Algaas/Gaas, And Si/Sige Solar-Cells
Abbreviated Journal Title
Sol. Energy Mater. Sol. Cells
Keywords
Heterojunction Bipolar-Transistors; Numerical-Simulation; Efficiency; Gaas; Si1-Xgex; Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied
Abstract
Analytical and physical models for homojunction and heterojunction solar cells are developed, and the performances of solar cells made by the Si/Si homojunction and made by the increasingly important and popular AlGaAs/GaAs and Si/SiGe heterojunctions compared. The models developed, which include relevant device physics such as the effective surface recombination velocity at the high-low junction and band discontinuities associated with heterojunctions, correctly explain the solar cell characteristics experimentally observed. Our calculations suggest that the highest efficiencies attainable for AlGaAs/GaAs, Si/Si, and Si/SiGe cells, with optimized doping concentrations but without surface passivation and geometry optimization, are 21.25%, 17.8% and 13.5%, respectively, under 1 AM1.5 sun condition. For concentrator cell applications, the efficiencies improve to about 24.5%, 22.2%, and 22.0% for AlGaAs/GaAs, Si/Si, and Si/SiGe cells, respectively, under 100 AM1.5 suns. While the AlGaAs/GaAs cell possesses the highest efficiency among the three cells, the Si/Si and Si/SiGe cells can achieve a satisfactory conversion efficiency at high sun concentration (22% at 100 suns), making them attractive for concentrator cell applications because their processing is the same as or is compatible with existing silicon technology. Model predictions for two Si/Si and one AlGaAs/GaAs cells compare favorably with data reported in the literature.
Journal Title
Solar Energy Materials and Solar Cells
Volume
29
Issue/Number
3
Publication Date
1-1-1993
Document Type
Article
Language
English
First Page
261
Last Page
276
WOS Identifier
ISSN
0927-0248
Recommended Citation
"Physical Models For Predicting The Performance Of Si/Si, Algaas/Gaas, And Si/Sige Solar-Cells" (1993). Faculty Bibliography 1990s. 831.
https://stars.library.ucf.edu/facultybib1990/831
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu