Title
SubSpace Projection: A unified framework for a class of partition-based dimension reduction techniques
Abbreviated Journal Title
Inf. Sci.
Keywords
SubSpace Projection; Dimensionality reduction; Similarity search; Multidimensional indexing; Dimension partition; PRINCIPAL COMPONENT ANALYSIS; SEARCH; Computer Science, Information Systems
Abstract
Similarity search in high dimensional space is a nontrivial problem due to the so-called curse of dimensionality. Recent techniques such as Piecewise Aggregate Approximation (PAA), Segmented Means (SMEAN) and Mean-Standard deviation (MS) prove to be very effective in reducing data dimensionality by partitioning dimensions into subsets and extracting aggregate values from each dimension subset. These partition-based techniques have many advantages including very efficient multi-phased approximation while being simple to implement. They, however, are not adaptive to the different characteristics of data in diverse applications. We propose SubSpace Projection (SSP) as a unified framework for these partition-based techniques. SSP projects data onto subspaces and computes a fixed number of salient features with respect to a reference vector. A study of the relationships between query selectivity and the corresponding space partitioning schemes uncovers indicators that can be used to predict the performance of the partitioning configuration. Accordingly, we design a greedy algorithm to efficiently determine a good partitioning of the data dimensions. The results of our extensive experiments indicate that the proposed method consistently outperforms state-of-the-art techniques. (C) 2008 Elsevier Inc. All rights reserved.
Journal Title
Information Sciences
Volume
179
Issue/Number
9
Publication Date
1-1-2009
Document Type
Article
Language
English
First Page
1234
Last Page
1248
WOS Identifier
ISSN
0020-0255
Recommended Citation
"SubSpace Projection: A unified framework for a class of partition-based dimension reduction techniques" (2009). Faculty Bibliography 2000s. 1418.
https://stars.library.ucf.edu/facultybib2000/1418
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu