Title

Chronic intermittent hypoxia impairs heart rate responses to AMPA and NMDA and induces loss of glutamate receptor neurons in nucleus ambiguus of F344 rats

Authors

Authors

B. Yan; L. Li; S. W. Harden; D. Gozal; Y. Lin; W. B. Wead; R. D. Wurster;Z. Cheng

Abstract

Yan B, Li L, Harden SW, Gozal D, Lin Y, Wead WB, Wurster RD, Cheng ZJ. Chronic intermittent hypoxia impairs heart rate responses to AMPA and NMDA and induces loss of glutamate receptor neurons in nucleus ambiguus of F344 rats. Am J Physiol Regul Integr Comp Physiol 296: R299-R308, 2009. First published November 19, 2008; doi: 10.1152/ajpregu.90412.2008.-Chronic intermittent hypoxia (CIH), as occurs in sleep apnea, impairs baroreflex-mediated reductions in heart rate (HR) and enhances HR responses to electrical stimulation of vagal efferent. We tested the hypotheses that HR responses to activation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) and N-methyl-D-aspartate (NMDA) receptors in the nucleus ambiguus (NA) are reduced in CIH-exposed rats and that this impairment is associated with degeneration of glutamate receptor (GluR)-immunoreactive NA neurons. Fischer 344 rats (3-4 mo) were exposed to room air (RA) or CIH for 35-50 days (n = 18/group). At the end of the exposures, AMPA (4 pmol, 20 nl) and NMDA (80 pmol, 20 nl) were microinjected into the same location of the left NA (-200 mu m to +200 mu m relative to caudal end of area postrema; n = 6/group), and HR and arterial blood pressure responses were measured. In addition, brain stem sections at the level of -800, -400, 0, +400, and +800 mu m relative to obex were processed for AMPA and NMDA receptor immunohistochemistry. The number of NA neurons expressing AMPA receptors and NMDA receptors (NMDARs) was quantified. Compared with RA, we found that after CIH 1) HR responses to microinjection of AMPA into the left NA were reduced (RA -290 +/- 30 vs. CIH -227 +/- 15 beats/min, P < 0.05); 2) HR responses to microinjection of NMDA into the left NA were reduced (RA -302 +/- 16 vs. CIH -238 +/- 27 beats/min, P < 0.05); and 3) the number of NMDAR1, AMPA GluR1, and AMPA GluR2/3-immunoreactive cells in the NA was reduced (P < 0.05). These results suggest that degeneration of NA neurons expressing GluRs contributes to impaired baroreflex control of HR in rats exposed to CIH.

Journal Title

American Journal of Physiology-Regulatory Integrative and Comparative Physiology

Volume

296

Issue/Number

2

Publication Date

1-1-2009

Document Type

Article

First Page

R299

Last Page

R308

WOS Identifier

WOS:000262781200014

ISSN

0363-6119

Share

COinS