Title
Asymptotic learning control for a class of cascaded nonlinear uncertain systems
Abbreviated Journal Title
IEEE Trans. Autom. Control
Keywords
learning control; Lyapunov design; periodic function; stability; uncertain system; ROBOTIC MANIPULATORS; DYNAMIC-SYSTEMS; Automation & Control Systems; Engineering, Electrical & Electronic
Abstract
In this note, the problem of learning unknown functions in a class of cascaded nonlinear systems will be studied. The functions to be learned are those functions that are imbedded in the system dynamics and are of known period of time. In addition to the unknown periodic time functions, nonlinear uncertainties bounded by known functions of the state are also admissible. The objective of the note is to find an iterative learning control under which the class of nonlinear systems are globally stabilized (in the sense of being uniform bounded), their outputs are asymptotically convergent, and a combination of the time functions contained in system dynamics are asymptotically learned. To this end, a new type of differential-difference learning law is utilized to generate the proposed learning control that yields both asymptotic stability of the system output and asymptotic convergence of the learning error. The design is carried out by applying the Lyapunov direct method and the backward recursive design method.
Journal Title
Ieee Transactions on Automatic Control
Volume
47
Issue/Number
8
Publication Date
1-1-2002
Document Type
Article
Language
English
First Page
1369
Last Page
1376
WOS Identifier
ISSN
0018-9286
Recommended Citation
"Asymptotic learning control for a class of cascaded nonlinear uncertain systems" (2002). Faculty Bibliography 2000s. 3414.
https://stars.library.ucf.edu/facultybib2000/3414
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu