Title

Simulations of full-scale reverse osmosis membrane process

Authors

Authors

L. Song; S. Hong; J. Y. Hu; S. L. Ong;W. J. Ng

Abbreviated Journal Title

J. Environ. Eng.-ASCE

Keywords

membranes; desalination; water treatment; simulation; CONCENTRATION POLARIZATION; PERFORMANCE; TRANSPORT; PLANTS; Engineering, Environmental; Engineering, Civil; Environmental Sciences

Abstract

Performance of a two-stage full-scale reverse osmosis (RO) process for a desalination plant in Florida was simulated with a mathematical model based on the principles of membrane transport and mass conservation. In this model, water flux at any point along the filtration channel is calculated locally according to the basic transport theory of RO membranes. The changes in cross-flow velocity and salt concentration along the filtration channel were determined using mass balance principles of water and salt. Simulations of the plant performance were compared with the in-plant observation data over a period of more than 300 days. The results showed that the model could adequately describe the performance of the full-scale RO process based on a few module and operating parameters. The study also revealed that salt rejection of a RO membrane changed with feed salt concentration. The osmotic pressure coefficient that fits best with performance of this plant was substantially lower than the value determined with the "rule of thumb" (i.e., osmotic pressure in psi approximate to 0.01 x total dissolved solids in mg/L) and had to be determined specifically for the particular feed water being processed.

Journal Title

Journal of Environmental Engineering-Asce

Volume

128

Issue/Number

10

Publication Date

1-1-2002

Document Type

Article

Language

English

First Page

960

Last Page

966

WOS Identifier

WOS:000178295800008

ISSN

0733-9372

Share

COinS