Title
Spatial autoregression model: strong consistency
Abbreviated Journal Title
Stat. Probab. Lett.
Keywords
spatial autoregression; unit roots; two-parameter martingale; Statistics & Probability
Abstract
Let (alpha(n), beta(n)) denote the Gauss-Newton estimator of the parameter (alpha, beta) in the autoregression model Z(ij) = alphaZ(i-1,j) + betaZ(i,j-1) - alphabetaZ(i-1),(j-1) + epsilon(ij). It is shown in an earlier paper that when alpha = beta = 1, {n(3/2)(alpha(n)-alpha, beta(n)-beta)} converges in distribution to a bivariate normal random vector. A two-parameter strong martingale convergence theorem is employed here to prove that n(r)(alpha(n)-alpha, beta(n)-beta) -- > (0) under bar almost surely when r < (3)/(2). (C) 2003 Published by Elsevier B.V.
Journal Title
Statistics & Probability Letters
Volume
65
Issue/Number
2
Publication Date
1-1-2003
Document Type
Article
Language
English
First Page
71
Last Page
77
WOS Identifier
ISSN
0167-7152
Recommended Citation
"Spatial autoregression model: strong consistency" (2003). Faculty Bibliography 2000s. 3626.
https://stars.library.ucf.edu/facultybib2000/3626
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu