Title
Angle-dependent switching of granular and multilayer perpendicular media
Abbreviated Journal Title
IEEE Trans. Magn.
Keywords
magnetic films; magnetic recording; magnetization processes; FIELD; Engineering, Electrical & Electronic; Physics, Applied
Abstract
Optimal writing of media where full remanent switching is achieved depends on the reversal, mechanism and is of interest in designing ultrahigh density magnetic recording systems. Angle-dependent measurements of remanence curves provide a method of determining magnetization reversal mechanisms through comparison with well-known models, such as that due to Stoner and Wohlfarth. The commonly used switching models do not include magnetic viscosity effects and hence only approximate experimental data collected at laboratory times and temperatures. In order to achieve a more accurate comparison to the models and estimate the differences between finite temperature and time-independent data, we have determined the time-independent switching field H-swo(theta) and thermal stability parameter KV/kT(theta) for representative samples from the two classes of media, granular CoCrPt and multilayer Co/Pd, currently under consideration for perpendicular recording. Generalizing the switching field to arbitrary values of magnetization allows the time-independent switching field distribution to be determined and correlated with the fields produced by recording heads.
Journal Title
Ieee Transactions on Magnetics
Volume
39
Issue/Number
5
Publication Date
1-1-2003
Document Type
Article; Proceedings Paper
Language
English
First Page
2314
Last Page
2316
WOS Identifier
ISSN
0018-9464
Recommended Citation
"Angle-dependent switching of granular and multilayer perpendicular media" (2003). Faculty Bibliography 2000s. 4067.
https://stars.library.ucf.edu/facultybib2000/4067