Title

Real-time edge-enhanced dynamic correlation and predictive open-loop car-following control for robust tracking

Authors

Authors

J. Ahmed; M. N. Jafri; M. Shah;M. Akbar

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

Mach. Vis. Appl.

Keywords

visual tracking; BPNN-controlled fast normalized correlation; dynamic; search-window; robust template-updating; predictive open-loop; car-following control; Computer Science, Artificial Intelligence; Computer Science, ; Cybernetics; Engineering, Electrical & Electronic

Abstract

We present a robust framework for a real-time visual tracking system, based on a BPNN-controlled fast normalized correlation (BCFNC) algorithm and a predictive open-loop car-following control (POL-CFC) strategy. The search for the target is carried out in a dynamically generated resizable search-window. In order to achieve the robustness, we use some edge-enhancement operations before the correlation operation, and introduce an adaptive template-updating scheme. The proposed tracking algorithm is compared with various correlation-based techniques and (in some cases) with the mean-shift and the condensation trackers on real-world scenarios. A significant improvement in efficiency and robustness is reported. The POL-CFC algorithm approximates the current velocity of an open-loop pan-tilt unit, computes the predicted relative-velocity of the object using Kalman filter, and generates the precise control signals to move the camera accurately towards the maneuvering target regardless of its changing velocity. The proposed system works in real-time at the speed of 25-200 frames/ second depending on the template size, and it can persistently track a distant or near object even in the presence of object fading, low-contrast imagery, noise, short-lived background clutter, object-scaling, changing object-velocity, varying illumination, object maneuvering, multiple objects, obscuration, and sudden occlusion.

Journal Title

Machine Vision and Applications

Volume

19

Issue/Number

1

Publication Date

1-1-2008

Document Type

Article

Language

English

First Page

1

Last Page

25

WOS Identifier

WOS:000252420300001

ISSN

0932-8092

Share

COinS