Title

Learning tactical human behavior through observation of human performance

Authors

Authors

H. K. G. Fernlund; A. J. Gonzalez; M. Georgiopoulos;R. F. DeMara

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

IEEE Trans. Syst. Man Cybern. Part B-Cybern.

Keywords

context-based reasoning; human behavioral modeling; genetic programming; simulation; KNOWLEDGE; Automation & Control Systems; Computer Science, Artificial Intelligence; Computer Science, Cybernetics

Abstract

It is widely accepted that the difficulty and expense involved in acquiring the knowledge behind tactical behaviors has been one limiting factor in the development of simulated agents representing adversaries and teammates in military and game simulations. Several researchers have addressed this problem with varying degrees of success. The problem mostly lies in the fact that tactical knowledge is difficult to elicit and represent through interactive sessions between the model developer and the subject matter expert. This paper describes a novel approach that employs genetic programming in conjunction with context-based reasoning to evolve tactical agents based upon automatic observation of a human performing a mission on a simulator. In this paper, we describe the process used to carry out the learning. A prototype was built to demonstrate feasibility and it is described herein. The prototype was rigorously and extensively tested. The evolved agents exhibited good fidelity to the observed human performance, as well as the capacity to generalize from it.

Journal Title

Ieee Transactions on Systems Man and Cybernetics Part B-Cybernetics

Volume

36

Issue/Number

1

Publication Date

1-1-2006

Document Type

Article

Language

English

First Page

128

Last Page

140

WOS Identifier

WOS:000234882600011

ISSN

1083-4419

Share

COinS