Title

Simulating 3-D lung dynamics using a programmable graphics processing unit

Authors

Authors

A. P. Santhanam; F. G. Hamza-Lup;J. P. Rolland

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

IEEE T. Inf. Technol. Biomed.

Keywords

augmented reality; Green's function; lung physiology; spherical; harmonics; Computer Science, Information Systems; Computer Science, ; Interdisciplinary Applications; Mathematical & Computational Biology; Medical Informatics

Abstract

Medical simulations of lung dynamics promise to be effective tools for teaching and training clinical and surgical procedures related to lungs. Their effectiveness may be greatly enhanced when visualized in an augmented reality (AR) environment. However, the computational requirements of AR environments limit the availability of the central processing unit (CPU) for the lung dynamics simulation for different breathing conditions. In this paper, we present a method for computing lung deformations in real time by taking advantage of the programmable graphics processing unit (GPU). This will save the CPU time for other AR-associated tasks such as tracking, communication, and interaction management. An approach for the simulations of the three-dimensional (3-D) lung dynamics using Green's formulation in the case of upright position is taken into consideration. We extend this approach to other orientations as well as the subsequent changes in breathing. Specifically, the proposed extension presents a computational optimization and its implementation in a GPU. Results show that the computational requirements for simulating the deformation of a 3-D lung model are significantly reduced for point-based rendering.

Journal Title

Ieee Transactions on Information Technology in Biomedicine

Volume

11

Issue/Number

5

Publication Date

1-1-2007

Document Type

Article

Language

English

First Page

497

Last Page

506

WOS Identifier

WOS:000249309900001

ISSN

1089-7771

Share

COinS