Title
A connectionist-symbolic approach to modeling agent behavior: Neural networks grouped by contexts
Keywords
Computer Science, Artificial Intelligence
Abstract
A recent report by the National Research Council (NRC) declares neural network,, "hold the most promise for providing powerful learning models". While some researchers have experimented with using neural networks to model battlefield behavior for Computer Generated Forces (CGF) systems used in distributed simulations, the NRC report indicates that further research is needed to develop a hybrid system that will integrate the newer neural network technology into the current rule-based paradigms. This paper Supports this solicitation by examining the use of a context structure to modularly organize the application of neural networks to a low-level Semi-Automated Forces (SAF) reactive task. Specifically. it reports on the development of a neural network movement model and illustrates how its performance is improved through the use of the modular context paradigm Further. this paper introduces the theory behind the neural networks' architecture and training algorithms as well as the specifics of how the networks were developed for this investigation. Lastly. it illustrates how the networks were integrated with SAF software, defines the networks' performance measures, presents the result, of the scenarios considered in this investigation. and offers directions for future work.
Journal Title
Modeling and Using Context, Proceedings
Volume
2116
Publication Date
1-1-2001
Document Type
Article
Language
English
First Page
198
Last Page
209
WOS Identifier
ISSN
0302-9743; 3-540-42379-6
Recommended Citation
"A connectionist-symbolic approach to modeling agent behavior: Neural networks grouped by contexts" (2001). Faculty Bibliography 2000s. 8025.
https://stars.library.ucf.edu/facultybib2000/8025
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu