Title

Near-field enhancement of infrared intensities for f-f transitions in Er3+ ions close to the surface of silicon nanoparticles

Authors

Authors

L. Borowska; S. Fritzsche; P. G. Kik;A. E. Masunov

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

J. Mol. Model.

Keywords

Ab initio theory; Erbium doped waveguide amplifiers; Optical gain; materials; Spin-orbit coupling; WAVE-GUIDES; CROSS-SECTION; SIO2; AMPLIFIER; ELEMENTS; GAIN; Biochemistry & Molecular Biology; Biophysics; Chemistry, ; Multidisciplinary; Computer Science, Interdisciplinary Applications

Abstract

Erbium doped waveguide amplifiers can be used in optical integrated circuits to compensate for signal losses. Such amplifiers use stimulated emission from the first excited state (I-4(13/2)) to the ground state (I-4(15/2)) of Er3+ at 1.53 mu m, the standard wavelength for optical communication. Since the intra-f transitions are parity forbidden for free Er3+ ions, the absorption and the emission cross sections are quite small for such doped amplifiers. To enhance the absorption, Si nanoclusters can be embedded in silica matrix. Here we investigate the effect of the Si nanocluster on the Er3+ emission using ab initio theory for the first time. We combine multi-reference configuration interaction with one-electron spin-orbit Hamiltonian and relativistic effective core potentials. Our calculations show that the presence of a polarizable Be atom at 5 angstrom from the Er3+ ion in a crystalline environment can lead to an enhancement in the emission by a factor of three. The implications of this effect in designing more efficient optical gain materials are discussed.

Journal Title

Journal of Molecular Modeling

Volume

17

Issue/Number

3

Publication Date

1-1-2011

Document Type

Article

Language

English

First Page

423

Last Page

428

WOS Identifier

WOS:000289531200002

ISSN

1610-2940

Share

COinS