Title
Dissociation Curves and Binding Energies of Diatomic Transition Metal Carbides from Density Functional Theory
Abbreviated Journal Title
Int. J. Quantum Chem.
Keywords
3d-transition metals; relativistic correction; potential energy curve; hybrid exchange-correlation functional; unrestricted Kohn-Sham; broken-symmetry DFT; AB-INITIO INVESTIGATIONS; ELECTRONIC-STRUCTURE; NONCOVALENT; INTERACTIONS; THERMOCHEMICAL KINETICS; TITANIUM CARBIDE; EXACT-EXCHANGE; STATES; ATOMS; MOLECULE; CRC; Chemistry, Physical; Mathematics, Interdisciplinary Applications; Physics, Atomic, Molecular & Chemical
Abstract
The computational description of the catalytic processes on the surface of transition metals (TMs) requires methods capable of accurate prediction of the bond forming and breaking between the atoms of metal and other elements. In our previous report [Goel and Masunov, J Chem Phys, 129, 214302, 2008], we studied TM hydrides and found that Boese-Martin functional for kinetics (BMK) combined with broken symmetry approach described dissociation process more accurately than multireference wavefunction theory (WFT) methods and some other functionals. Here, we investigate the binding energy, geometry, electronic structure, and potential energy curves for diatomic TM carbides using several exchange-correlation functionals. The functionals that include explicit dependence on the kinetic energy density (tau-functionals) are considered, among others. We have found M05-2x performance to be the best, followed by BMK, when compared with experimental and high level WFT energetics. This agreement deteriorates quickly for other functionals when the fraction of the Hartree-Fock exchange is decreased. Scalar relativistic corrections yield mixed results for bond lengths and bond energies. The natural bond orbital analysis provides useful insight in description of stable spin state over others in these diatomics. (C) 2011 Wiley Periodicals, Inc. Int J Quantum Chem 111: 4276-4287, 2011
Journal Title
International Journal of Quantum Chemistry
Volume
111
Issue/Number
15
Publication Date
1-1-2011
Document Type
Article
DOI Link
Language
English
First Page
4276
Last Page
4287
WOS Identifier
ISSN
0020-7608
Recommended Citation
"Dissociation Curves and Binding Energies of Diatomic Transition Metal Carbides from Density Functional Theory" (2011). Faculty Bibliography 2010s. 1325.
https://stars.library.ucf.edu/facultybib2010/1325
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu