Title
CMOS RF Power Amplifier Variability and Reliability Resilient Biasing Design and Analysis
Abbreviated Journal Title
IEEE Trans. Electron Devices
Keywords
Hot electron; Monte Carlo simulation; positive bias temperature; instability (PBTI); power amplifier (PA); random doping fluctuation; reliability; variability; INTERFACE-TRAP GENERATION; MOS-TRANSISTORS; GATE OXIDE; FLUCTUATIONS; DEGRADATION; BREAKDOWN; SUBJECT; DEVICES; PBTI; NBTI; Engineering, Electrical & Electronic; Physics, Applied
Abstract
This paper presents a novel biasing design that makes the complementary metal-oxide-semiconductor radio frequency power amplifier (PA) resilient to process variability and device reliability. The biasing scheme provides resilience through the threshold voltage adjustment, and at the mean time, it does not degrade the PA performance. Analytical equations are derived for studying the resilient biasing on PA process sensitivity. A class-AB PA with a resilient design is compared with a PA without such a design using a Predictive Technology Model 65-nm technology. The Advanced Design System simulation results show that the resilient biasing design helps improve the robustness of the PA in P(1dB), P(sat), and power-added efficiency. Except for postfabrication calibration capability, the adaptive body biasing design reduces the impact of variability and reliability on PA significantly when subjected to threshold voltage shift and electron mobility degradation.
Journal Title
Ieee Transactions on Electron Devices
Volume
58
Issue/Number
2
Publication Date
1-1-2011
Document Type
Article
Language
English
First Page
540
Last Page
546
WOS Identifier
ISSN
0018-9383
Recommended Citation
"CMOS RF Power Amplifier Variability and Reliability Resilient Biasing Design and Analysis" (2011). Faculty Bibliography 2010s. 1580.
https://stars.library.ucf.edu/facultybib2010/1580
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu