Title
Thermotransport in gamma(bcc) U-Zr alloys: A phase-field model study
Abbreviated Journal Title
J. Nucl. Mater.
Keywords
FAST-REACTOR FUEL; CONSTITUENT REDISTRIBUTION; THERMAL DIFFUSION; GRADIENT; SYSTEM; ELECTROMIGRATION; THERMOMIGRATION; TEMPERATURE; MIGRATION; URANIUM; Materials Science, Multidisciplinary; Nuclear Science & Technology; Mining & Mineral Processing
Abstract
Atomic transport in the presence of a temperature gradient, commonly known as thermotransport or the thermomigration phenomenon, was simulated for U-Zr alloys using a phase-field model derived from irreversible thermodynamics. The free energy of the U-Zr system, a necessary ingredient for the phase-field-model, was directly incorporated from the available thermodynamic database. Kinetic parameters such as atomic mobility and heat of transport terms were obtained from experimental values reported in the literature. The model was applied to a single-phase (bcc-gamma phase) alloy and to a diffusion couple consisting of two single-phase (bcc-gamma phase) alloys of different compositions, both subjected to a constant temperature gradient. Constituent redistribution in the absence and presence of a compositional gradient was examined. An enrichment of Zr with a corresponding depletion of U was observed at the hot end of the initially homogeneous single-phase alloy. A similar atomic transport behavior was observed in the diffusion couple, where the magnitude and direction of the final composition gradient was dictated by the combined influence of atomic mobility and heat of transport terms. (C) 2011 Elsevier B.V. All rights reserved.
Journal Title
Journal of Nuclear Materials
Volume
414
Issue/Number
2
Publication Date
1-1-2011
Document Type
Article; Proceedings Paper
Language
English
First Page
211
Last Page
216
WOS Identifier
ISSN
0022-3115
Recommended Citation
"Thermotransport in gamma(bcc) U-Zr alloys: A phase-field model study" (2011). Faculty Bibliography 2010s. 1679.
https://stars.library.ucf.edu/facultybib2010/1679
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu