Title

Thermotransport in gamma(bcc) U-Zr alloys: A phase-field model study

Authors

Authors

R. R. Mohanty; J. Bush; M. A. Okuniewski;Y. H. Sohn

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

J. Nucl. Mater.

Keywords

FAST-REACTOR FUEL; CONSTITUENT REDISTRIBUTION; THERMAL DIFFUSION; GRADIENT; SYSTEM; ELECTROMIGRATION; THERMOMIGRATION; TEMPERATURE; MIGRATION; URANIUM; Materials Science, Multidisciplinary; Nuclear Science & Technology; Mining & Mineral Processing

Abstract

Atomic transport in the presence of a temperature gradient, commonly known as thermotransport or the thermomigration phenomenon, was simulated for U-Zr alloys using a phase-field model derived from irreversible thermodynamics. The free energy of the U-Zr system, a necessary ingredient for the phase-field-model, was directly incorporated from the available thermodynamic database. Kinetic parameters such as atomic mobility and heat of transport terms were obtained from experimental values reported in the literature. The model was applied to a single-phase (bcc-gamma phase) alloy and to a diffusion couple consisting of two single-phase (bcc-gamma phase) alloys of different compositions, both subjected to a constant temperature gradient. Constituent redistribution in the absence and presence of a compositional gradient was examined. An enrichment of Zr with a corresponding depletion of U was observed at the hot end of the initially homogeneous single-phase alloy. A similar atomic transport behavior was observed in the diffusion couple, where the magnitude and direction of the final composition gradient was dictated by the combined influence of atomic mobility and heat of transport terms. (C) 2011 Elsevier B.V. All rights reserved.

Journal Title

Journal of Nuclear Materials

Volume

414

Issue/Number

2

Publication Date

1-1-2011

Document Type

Article; Proceedings Paper

Language

English

First Page

211

Last Page

216

WOS Identifier

WOS:000293481800023

ISSN

0022-3115

Share

COinS