Title
Sparse Approximation Property and Stable Recovery of Sparse Signals From Noisy Measurements
Abbreviated Journal Title
IEEE Trans. Signal Process.
Keywords
Additive noise; approximation methods; compressed sensing; signal; reconstruction; L(1) MINIMIZATION; RECONSTRUCTION; Engineering, Electrical & Electronic
Abstract
In this correspondence, we introduce a sparse approximation property of order for a measurement matrix A : parallel to x(s)parallel to(2) < = D parallel to Ax parallel to(2) + beta(sigma(s)(x))/root s for all x, where x(s) is the best s-sparse approximation of the vector x in l(5), sigma(s)(x) is the s-sparse approximation error of the vector x in l(1), and D and beta are positive constants. The sparse approximation property for a measurement matrix can be thought of as a weaker version of its restricted isometry property and a stronger version of its null space property. In this correspondence, we show that the sparse approximation property is an appropriate condition on a measurement matrix to consider stable recovery of any compressible signal from its noisy measurements. In particular, we show that any compressible signal can be stably recovered from its noisy measurements via solving an l(1)-minimization problem if the measurement matrix has the sparse approximation property with beta is an element of (0, 1), and conversely the measurement matrix has the sparse approximation property with beta is an element of (0, infinity) if any compressible signal can be stably recovered from its noisy measurements via solving an l(1)-minimization problem.
Journal Title
Ieee Transactions on Signal Processing
Volume
59
Issue/Number
10
Publication Date
1-1-2011
Document Type
Article
Language
English
First Page
5086
Last Page
5090
WOS Identifier
ISSN
1053-587X
Recommended Citation
"Sparse Approximation Property and Stable Recovery of Sparse Signals From Noisy Measurements" (2011). Faculty Bibliography 2010s. 1965.
https://stars.library.ucf.edu/facultybib2010/1965
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu