Title
Layered YSZ/SCSZ/YSZ Electrolytes for Intermediate Temperature SOFC Part I: Design and Manufacturing
Abbreviated Journal Title
Fuel Cells
Keywords
Interface; Layered Electrolyte; Manufacturing; Scandia and Ceria; Stabilized Zirconia; Solid Oxide Fuel Cell; Yttria Stabilized Zirconia; STABILIZED ZIRCONIA ELECTROLYTE; OXIDE FUEL-CELLS; OXYGEN-ION TRANSPORT; ELECTRICAL-PROPERTIES; DOPED ZIRCONIA; MECHANICAL-BEHAVIOR; ACTIVATION-ENERGY; PHASE-TRANSITION; CEO2 ELECTROLYTE; CONDUCTIVITY; Electrochemistry; Energy & Fuels
Abstract
(Sc2O3)0.1(CeO2)0.01(ZrO2)0.89 (SCSZ) ceramic electrolyte has superior ionic conductivity in the intermediate temperature range (700800?degrees C), but it does not exhibit good phase and chemical stability in comparison with 8?mol% Y2O3ZrO2 (YSZ). To maintain high ionic conductivity and improve the stability in the whole electrolyte, layered structures with YSZ outer layers and SCSZ inner layers were designed. Because of a mismatch of coefficients of thermal expansion and Young's moduli of SCSZ and YSZ phases, upon cooling of the electrolytes after sintering, thermal residual stresses will arise, leading to a possible strengthening of the layered composite and, therefore, an increase in the reliability of the electrolyte. Laminated electrolytes with three, four, and six layers design were manufactured using tape-casting, lamination, and sintering techniques. After sintering, while the thickness of YSZ outer layers remained constant at similar to 30?mu m, the thickness of the SCSZ inner layer varied from similar to 30?mu m for a YSCY three-layered electrolyte, similar to 60?mu m for a Y2SCY four-layered electrolyte, and similar to 120?mu m for a Y4SCY six-layered electrolyte. The microstructure, crystal structure, impurities present, and the density of the sintered electrolytes were characterized by scanning and transmission electron microscopy, X-ray and neutron diffraction, secondary ion mass spectroscopy, and water immersion techniques.
Journal Title
Fuel Cells
Volume
12
Issue/Number
5
Publication Date
1-1-2012
Document Type
Article
Language
English
First Page
722
Last Page
731
WOS Identifier
ISSN
1615-6846
Recommended Citation
"Layered YSZ/SCSZ/YSZ Electrolytes for Intermediate Temperature SOFC Part I: Design and Manufacturing" (2012). Faculty Bibliography 2010s. 2402.
https://stars.library.ucf.edu/facultybib2010/2402
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu