Title
Laser irradiated nano-architectured undoped tin oxide arrays: mechanism of ultrasensitive room temperature hydrogen sensing
Abbreviated Journal Title
Nanoscale
Keywords
GAS SENSOR; THIN-FILM; ELECTROCHEMICAL SENSORS; THEORETICAL-MODEL; SENSITIVITY; SNO2; PERFORMANCE; Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials; Science, Multidisciplinary; Physics, Applied
Abstract
Undoped nanostructured tin oxide (SnO2) arrays were prepared on oxidized Si substrates by nanosecond pulsed laser interference irradiation for hydrogen gas sensing applications. Scanning electron microscopy (SEM), in combination with Atomic Force Microscopy (AFM), showed that the SnO2 surface consisted of periodic features of similar to 130 nm width, similar to 228 nm spacing, an average height of similar to 8 nm along the periodicity and tens of microns length. The SnO2 nanostructured arrays and precursor thin films were tested by cyclic exposure under dynamic conditions of hydrogen in the concentration range of 300-9000 ppm. The observed electrical response of SnO2 towards hydrogen at low concentrations and room temperature drastically improved in the nanostructured array as compared to the thin film. The results suggest that this method to fabricate SnO2 nanostructured arrays has the potential to produce nanodevices that have ultra-low detection limits, and fast response and recovery times, which are suited for practical hydrogen sensing applications.
Journal Title
Nanoscale
Volume
4
Issue/Number
22
Publication Date
1-1-2012
Document Type
Article
DOI Link
Language
English
First Page
7256
Last Page
7265
WOS Identifier
ISSN
2040-3364
Recommended Citation
"Laser irradiated nano-architectured undoped tin oxide arrays: mechanism of ultrasensitive room temperature hydrogen sensing" (2012). Faculty Bibliography 2010s. 3007.
https://stars.library.ucf.edu/facultybib2010/3007
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu