Title

Laser irradiated nano-architectured undoped tin oxide arrays: mechanism of ultrasensitive room temperature hydrogen sensing

Authors

Authors

R. McCormack; N. Shirato; U. Singh; S. Das; A. Kumar; H. J. Cho; R. Kalyanaraman;S. Seal

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

Nanoscale

Keywords

GAS SENSOR; THIN-FILM; ELECTROCHEMICAL SENSORS; THEORETICAL-MODEL; SENSITIVITY; SNO2; PERFORMANCE; Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials; Science, Multidisciplinary; Physics, Applied

Abstract

Undoped nanostructured tin oxide (SnO2) arrays were prepared on oxidized Si substrates by nanosecond pulsed laser interference irradiation for hydrogen gas sensing applications. Scanning electron microscopy (SEM), in combination with Atomic Force Microscopy (AFM), showed that the SnO2 surface consisted of periodic features of similar to 130 nm width, similar to 228 nm spacing, an average height of similar to 8 nm along the periodicity and tens of microns length. The SnO2 nanostructured arrays and precursor thin films were tested by cyclic exposure under dynamic conditions of hydrogen in the concentration range of 300-9000 ppm. The observed electrical response of SnO2 towards hydrogen at low concentrations and room temperature drastically improved in the nanostructured array as compared to the thin film. The results suggest that this method to fabricate SnO2 nanostructured arrays has the potential to produce nanodevices that have ultra-low detection limits, and fast response and recovery times, which are suited for practical hydrogen sensing applications.

Journal Title

Nanoscale

Volume

4

Issue/Number

22

Publication Date

1-1-2012

Document Type

Article

Language

English

First Page

7256

Last Page

7265

WOS Identifier

WOS:000310978100047

ISSN

2040-3364

Share

COinS