Title
Strain and Architecture-Tuned Reactivity in Ceria Nanostructures; Enhanced Catalytic Oxidation of CO to CO2
Abbreviated Journal Title
Chem. Mat.
Keywords
ceria nanoparticle; mesoporous; nanorod; molecular dynamics; simulated; crystallization; aberration corrected TEM; catalysis; IN-SITU; NANOPARTICLES; SURFACES; NANOMATERIALS; NANOCRYSTALS; DEFORMATION; LITHIATION; DYNAMICS; ZIRCONIA; NANORODS; Chemistry, Physical; Materials Science, Multidisciplinary
Abstract
Atomistic simulations reveal that the chemical reactivity of ceria nanorods is increased when tensioned and reduced when compressed promising strain-tunable reactivity; the reactivity is determined by calculating the energy required to oxidize CO to CO2 by extracting oxygen from the surface of the nanorod. Visual reactivity "fingerprints", where surface oxygens are colored according to calculated chemical reactivity, are presented for ceria nanomaterials including: nanoparticles, nanorods, and mesoporous architectures. The images reveal directly how the nanoarchitecture (size, shape, channel curvature, morphology) and microstructure (dislocations, grain-boundaries) influences chemical reactivity. We show the generality of the approach, and its relevance to a variety of important processes and applications, by using the method to help understand: TiO2 nanoparticles (photocatalysis), mesoporous ZnS (semiconductor band gap engineering), MgO (catalysis), CeO2/YSZ interfaces (strained thin films; solid oxide fuel cells/nanoionics), and Li-MnO2 (lithiation induced strain; energy storage).
Journal Title
Chemistry of Materials
Volume
24
Issue/Number
10
Publication Date
1-1-2012
Document Type
Article
DOI Link
Language
English
First Page
1811
Last Page
1821
WOS Identifier
ISSN
0897-4756
Recommended Citation
"Strain and Architecture-Tuned Reactivity in Ceria Nanostructures; Enhanced Catalytic Oxidation of CO to CO2" (2012). Faculty Bibliography 2010s. 3255.
https://stars.library.ucf.edu/facultybib2010/3255
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu